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 Software is everywhere in today’s world 
 

 Context where software is working is 
changing because world (our society) is 
changing 
 

 Software must be updated to keep matching 
context with our real world 
 

 Longer the software lifecycle, more changing 
demand 



: Scratch : Maintenance : Expansion : Rebuild 

Source: IPA/SEC White Paper 2014-2015 on Software Development Projects in Japan 
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 Short time of development 
◦ Modification tends to be treated as easier than 

scratch 
 

 Lack of knowledge 
◦ No document, no person in charge  
 

 Compatibility assurance 
 

Our interest 



 Resolve compatibility testing issues by 
applying Symbolic Execution technique to the 
testing process 
 

 Scope 
◦  Software logical behavior 
 there are also some more perspectives such as 

performance but out of scope 
◦ Software modification does not change the user 

interface 
 Test cases of the original software can be re-used 
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 Experiment 1 
◦ Apply this method to the sample application in case 

of specification modification 
◦ To verify if we can find three types of modification: 

Add, Change, Remove 
 

 Experiment 2 
◦ Apply this method to the sample application in case 

that the application has bugs 
◦ To verify if we can find three types of bugs 



 If age of a customer is less than or equal to 3, Free (0% of the 
normal fee)  

 If Wednesday, 90% of the normal fee 
 If age of a customer is greater than or equal to 60, 60% of the 

normal fee 
 If sex of a customer is female and her age is greater than or 

equal to 50, 65% of the normal fee 
 If the memorial day, 80% of the normal fee 
 If a customer is local citizen, 50% of the normal fee 
 If after 3 P.M., 70% of the normal fee 
 If age of a customer is less than or equal to 12, 40% of the 

normal fee 
 Note that greater discount rate is applied when multiple 

conditions are met 
 

Sample application calculates a discount rate of admission fee for 
the public facility 



 If age of a customer is less than or equal to 3, Free (0% of the 
normal fee)  

 If Wednesday, 90% of the normal fee 
 If age of a customer is greater than or equal to 60, 60% of the 

normal fee 
 If sex of a customer is female and her age is greater than or 

equal to 55, 65% of the normal fee 
 If the memorial day, 80% of the normal fee 
 If a customer is local citizen, 50% of the normal fee 
 If after 3 P.M., 70% of the normal fee 
 If age of a customer is less than or equal to 12, 40% of the 

normal fee 
 If January or February, 67% of the normal 

fee 
 Note that greater discount rate is applied when multiple 

conditions are met 
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 Symbolic Execution Tool for Java : 
SPF(Symbolic Path Finder) 
 

 See here for detail of SPF: 
◦ http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects

/jpf-symbc/doc 



# Sex Age Day of week local citizen? Month
memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Modified
Spec.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 13 Monday Yes December No 0 50 50
4 Male 60 Monday No December No 0 60 60
5 Female 50 Monday No December No 0 65 100
6 Female 13 Monday No December No 15 70 70
7 Female 13 Monday No December Yes 0 80 100
8 Female 13 Wednesday No December No 0 90 90
9 Female 13 Monday No December No 0 100 100

10 Male 13 Monday No December No 15 70 70
11 Male 13 Monday No December Yes 0 80 100
12 Male 13 Wednesday No December No 0 90 90
13 Male 13 Monday No December No 0 100 100

Because the condition 
“Memorial day?” is 

removed 

Because the condition 
for age of customer is 

changed 



# Sex Age Day of week local citizen? Month
memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Original
Spec.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 13 Monday Yes December No 0 50 50
4 Male 60 Monday No December No 0 60 60
5 Female 55 Monday No December No 0 65 65
6 Female 13 Monday No February No 15 67 100
7 Female 13 Monday No December No 15 70 70
8 Female 13 Wednesday No December No 0 90 90
9 Female 13 Monday No December No 0 100 100

10 Female 13 Monday No January No 0 67 100
11 Male 13 Monday No February No 0 67 100
12 Male 13 Monday No December No 15 70 70
13 Male 13 Wednesday No December No 0 90 90
14 Male 13 Monday No December No 0 100 100
15 Male 13 Monday No January No 0 67 100

Because the condition 
for Month is newly 

added 
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# Sex Age Day of week local citizen? Month memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Bug impl.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 13 Monday Yes December No 0 50 100
4 Male 60 Monday No December No 0 60 100
5 Female 50 Monday No December No 0 65 100
6 Female 13 Monday No December No 15 70 70
7 Female 13 Monday No December Yes 0 80 100
8 Female 13 Wednesday No December No 0 90 90
9 Female 13 Monday No December No 0 100 100

10 Male 13 Monday No December No 15 70 70
11 Male 13 Monday No December Yes 0 80 100
12 Male 13 Wednesday No December No 0 90 90
13 Male 13 Monday No December No 0 100 100

Because the condition 
“Citizen?” is removed 

Because inequality sign 
of the condition for age 

is changed 



# Sex Age Day of week local citizen? Month memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Original
Spec.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 61 Monday No December No 0 60 60
4 Female 55 Monday No December No 0 65 65
5 Female 13 Monday No February No 0 67 100
6 Female 13 Monday No December No 15 70 70
7 Female 13 Wednesday No December No 0 90 90
8 Female 13 Tuesday No December No 0 90 100
9 Female 13 Monday No December No 0 100 100

10 Female 13 Monday No January No 0 67 100
11 Male 13 Monday No February No 0 67 100
12 Male 13 Monday No December No 15 70 70
13 Male 13 Wednesday No December No 0 90 90
14 Male 13 Tuesday No December No 0 90 100
15 Male 13 Monday No December No 0 100 100
16 Male 13 Monday No January No 0 67 100

Because the condition 
“Tuesday?” is newly 

added 



 Is there any issue when we apply the method 
to a commercial software? 
 
 
 



 Tool dependency 
 

 Scalability 
 

 Education 



 Our method uses Symbolic execution tool to 
generate test cases 
 

 Some restrictions on the tools 
◦ Supported Language: C, C++, Java, JavaScript, etc. 
◦ Supported Input Variables: bit array, integer, 

floating point, etc. 
 



 Sample program is okay, but commercial 
program is much bigger 
 

 Issues on scalability has been studied 
 

 1)Path explosion 
◦ Too many path to be treated 

 2)Checking differences of test cases 
◦ Too many differences to be checked by hand 



 Path cutting technique 
◦ Add constraints about coverage level 
◦ This study introduces condition coverage instead of 

full path coverage 
 
 
 
 
 

Source: Enhancing Symbolic Execution to Test the Compatibility of Re-engineered Industrial Software 



 Variable grouping 
◦ If functions of the software can be treated 

independently, the input variables can be divided  
 
 
 
 

Source: Enhancing Symbolic Execution to Test the Compatibility of Re-engineered Industrial Software 
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 Bigger modification is made, more differences 
may be made 

 Therefore we must stop big-bang testing, 
instead, frequently testing at small 
modification. 

 Since the testing process is automated, we 
can do it. 



 Symbolic Execution technique and tools are 
now open 

 However it is still not easy to understand and 
use 

 Due to the tool installation, restrictions, no 
user community in Japan 
 

 Now we are creating  
the user community!  



 We proposed a new software testing method for logic 
compatibility verification. 
 

 By using this method compatibility of logical behavior 
was exhaustively verified and also full path coverage 
was achieved. 
 

 From the experimental results, it was verified that the 
method could detect all the three types of 
specification changes and bugs.  
 

 Our next step is to apply the method to many types 
of real software to clarify its limitation or restriction 
which depends on the types. 
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