
Keiji Uetsuki
FeliCa Networks, Inc.

 Background

 Current Compatibility Testing Process

 Proposed Testing Process

 Application Experiment

 Discussion to apply to commercial software

 Conclusion

 Software is everywhere in today’s world

 Context where software is working is
changing because world (our society) is
changing

 Software must be updated to keep matching
context with our real world

 Longer the software lifecycle, more changing
demand

: Scratch : Maintenance : Expansion : Rebuild

Source: IPA/SEC White Paper 2014-2015 on Software Development Projects in Japan

Modification
64%

Scratch Development
Down Trend

Development Feedback

FuncA FuncA

FuncB

FuncA

FuncB

FuncC

FuncA

FuncB

FuncC

FuncD

Iteration

 Short time of development
◦ Modification tends to be treated as easier than

scratch

 Lack of knowledge
◦ No document, no person in charge

 Compatibility assurance

Our interest

 Resolve compatibility testing issues by
applying Symbolic Execution technique to the
testing process

 Scope
◦ Software logical behavior
 there are also some more perspectives such as

performance but out of scope
◦ Software modification does not change the user

interface
 Test cases of the original software can be re-used

Test Case
For original

Target
Software

Out
put

Oracle Compare

Testing process for original software

All outputs and oracles
shall be matched

Test Case
For original

Target
Software

Out
put

Oracle Compare

Testing process for modified software

All outputs and oracles
shall be matched

Test Case
For modified

Porting,
Refactoring

M A R

Original S/W New S/W

Can we find all bugs ?

Removed

Changed

Added

Porting,
Refactoring

M A R

Original S/W New S/W

Can we find all bugs ?

Removed

Changed

Added

COVERED
BY TEST CASE

COVERED
BY TEST CASE

Porting,
Refactoring

M A R

Original S/W New S/W

Can we find all bugs ?

Removed

Changed

Added

In fact :
 weak test

coverage or
 no test case !

Original
Software

Modified
Software

Test Input
TCo

Symbolic
Exec Tool

Output
Ro2

Output
Rn2

Test Input
TCn

Symbolic
Exec Tool

Output
Rn1

Output
Ro1

Compare Compare

Generate TC from
Original

Apply it to Modified

Original
Software

Modified
Software

Test Input
TCo

Symbolic
Exec Tool

Output
Ro2

Output
Rn2

Test Input
TCn

Symbolic
Exec Tool

Output
Rn1

Output
Ro1

Compare Compare

Generate TC from
Modified

Apply it to Original

Porting,
Refactoring

M A R

Original S/W New S/W

Removed

Changed

Added

TCo to
Modified
Software

Porting,
Refactoring

M A R

Original S/W New S/W

Removed

Changed

Added

TCo to
Modified
Software

TCn to Original
Software

 Experiment 1
◦ Apply this method to the sample application in case

of specification modification
◦ To verify if we can find three types of modification:

Add, Change, Remove

 Experiment 2
◦ Apply this method to the sample application in case

that the application has bugs
◦ To verify if we can find three types of bugs

 If age of a customer is less than or equal to 3, Free (0% of the
normal fee)

 If Wednesday, 90% of the normal fee
 If age of a customer is greater than or equal to 60, 60% of the

normal fee
 If sex of a customer is female and her age is greater than or

equal to 50, 65% of the normal fee
 If the memorial day, 80% of the normal fee
 If a customer is local citizen, 50% of the normal fee
 If after 3 P.M., 70% of the normal fee
 If age of a customer is less than or equal to 12, 40% of the

normal fee
 Note that greater discount rate is applied when multiple

conditions are met

Sample application calculates a discount rate of admission fee for
the public facility

 If age of a customer is less than or equal to 3, Free (0% of the
normal fee)

 If Wednesday, 90% of the normal fee
 If age of a customer is greater than or equal to 60, 60% of the

normal fee
 If sex of a customer is female and her age is greater than or

equal to 55, 65% of the normal fee
 If the memorial day, 80% of the normal fee
 If a customer is local citizen, 50% of the normal fee
 If after 3 P.M., 70% of the normal fee
 If age of a customer is less than or equal to 12, 40% of the

normal fee
 If January or February, 67% of the normal

fee
 Note that greater discount rate is applied when multiple

conditions are met

Change

Remove

Add

Original Specification Modified Specification

Memorial
day? is

removed

 Symbolic Execution Tool for Java :
SPF(Symbolic Path Finder)

 See here for detail of SPF:
◦ http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects

/jpf-symbc/doc

Sex Age Day of week local citizen? Month
memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Modified
Spec.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 13 Monday Yes December No 0 50 50
4 Male 60 Monday No December No 0 60 60
5 Female 50 Monday No December No 0 65 100
6 Female 13 Monday No December No 15 70 70
7 Female 13 Monday No December Yes 0 80 100
8 Female 13 Wednesday No December No 0 90 90
9 Female 13 Monday No December No 0 100 100

10 Male 13 Monday No December No 15 70 70
11 Male 13 Monday No December Yes 0 80 100
12 Male 13 Wednesday No December No 0 90 90
13 Male 13 Monday No December No 0 100 100

Because the condition
“Memorial day?” is

removed

Because the condition
for age of customer is

changed

Sex Age Day of week local citizen? Month
memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Original
Spec.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 13 Monday Yes December No 0 50 50
4 Male 60 Monday No December No 0 60 60
5 Female 55 Monday No December No 0 65 65
6 Female 13 Monday No February No 15 67 100
7 Female 13 Monday No December No 15 70 70
8 Female 13 Wednesday No December No 0 90 90
9 Female 13 Monday No December No 0 100 100

10 Female 13 Monday No January No 0 67 100
11 Male 13 Monday No February No 0 67 100
12 Male 13 Monday No December No 15 70 70
13 Male 13 Wednesday No December No 0 90 90
14 Male 13 Monday No December No 0 100 100
15 Male 13 Monday No January No 0 67 100

Because the condition
for Month is newly

added

Citizen? is
removed

Bug implemented program Original Specification

Change

Add

Sex Age Day of week local citizen? Month memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Bug impl.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 13 Monday Yes December No 0 50 100
4 Male 60 Monday No December No 0 60 100
5 Female 50 Monday No December No 0 65 100
6 Female 13 Monday No December No 15 70 70
7 Female 13 Monday No December Yes 0 80 100
8 Female 13 Wednesday No December No 0 90 90
9 Female 13 Monday No December No 0 100 100

10 Male 13 Monday No December No 15 70 70
11 Male 13 Monday No December Yes 0 80 100
12 Male 13 Wednesday No December No 0 90 90
13 Male 13 Monday No December No 0 100 100

Because the condition
“Citizen?” is removed

Because inequality sign
of the condition for age

is changed

Sex Age Day of week local citizen? Month memorial
day?

Time
(hour)

Output
(discount
rate %)

Output from
Original
Spec.

1 Male 0 Monday No December No 0 0 0
2 Male 4 Monday No December No 0 40 40
3 Male 61 Monday No December No 0 60 60
4 Female 55 Monday No December No 0 65 65
5 Female 13 Monday No February No 0 67 100
6 Female 13 Monday No December No 15 70 70
7 Female 13 Wednesday No December No 0 90 90
8 Female 13 Tuesday No December No 0 90 100
9 Female 13 Monday No December No 0 100 100

10 Female 13 Monday No January No 0 67 100
11 Male 13 Monday No February No 0 67 100
12 Male 13 Monday No December No 15 70 70
13 Male 13 Wednesday No December No 0 90 90
14 Male 13 Tuesday No December No 0 90 100
15 Male 13 Monday No December No 0 100 100
16 Male 13 Monday No January No 0 67 100

Because the condition
“Tuesday?” is newly

added

 Is there any issue when we apply the method
to a commercial software?

 Tool dependency

 Scalability

 Education

 Our method uses Symbolic execution tool to
generate test cases

 Some restrictions on the tools
◦ Supported Language: C, C++, Java, JavaScript, etc.
◦ Supported Input Variables: bit array, integer,

floating point, etc.

 Sample program is okay, but commercial
program is much bigger

 Issues on scalability has been studied

 1)Path explosion
◦ Too many path to be treated

 2)Checking differences of test cases
◦ Too many differences to be checked by hand

 Path cutting technique
◦ Add constraints about coverage level
◦ This study introduces condition coverage instead of

full path coverage

Source: Enhancing Symbolic Execution to Test the Compatibility of Re-engineered Industrial Software

 Variable grouping
◦ If functions of the software can be treated

independently, the input variables can be divided

Source: Enhancing Symbolic Execution to Test the Compatibility of Re-engineered Industrial Software

Software

Input variables

Software

In1 In2 … InN

 Bigger modification is made, more differences
may be made

 Therefore we must stop big-bang testing,
instead, frequently testing at small
modification.

 Since the testing process is automated, we
can do it.

 Symbolic Execution technique and tools are
now open

 However it is still not easy to understand and
use

 Due to the tool installation, restrictions, no
user community in Japan

 Now we are creating
the user community!

 We proposed a new software testing method for logic
compatibility verification.

 By using this method compatibility of logical behavior
was exhaustively verified and also full path coverage
was achieved.

 From the experimental results, it was verified that the
method could detect all the three types of
specification changes and bugs.

 Our next step is to apply the method to many types
of real software to clarify its limitation or restriction
which depends on the types.

	Automated Compatibility Testing Method for Software Logic� by Using Symbolic Execution
	Agenda
	Background
	Trend of Software Development
	Agile software development process
	Issues on Software modification
	Objective of our study
	Compatibility testing process
	Compatibility testing process
	Test coverage
	Test coverage
	Test coverage
	Proposed testing process
	Proposed testing process
	Test Coverage
	Test Coverage
	Application Experiment
	Specification of the application
	Modified specification
	Flow chart of the program
	Tool demonstration
	Test result from the original specification
	Test result from the modified specification
	Bug implementation
	Test result from the original program
	Test result from the bug implemented program
	Discussion
	Issues to be solved
	ISSUE: Tool dependency
	ISSUE: Scalability
	Solution for path explosion
	Solution for path explosion
	Solution for difference check
	ISSUE: Education
	Conclusion

